本站使用了 Pjax 等基于 JavaScript 的开发技术,但您的浏览器已禁用 JavaScript,请开启 JavaScript 以保证网站正常显示!

有监督学习中的回归问题与分类问题

What is Machine Learning?

Two definitions of Machine Learning are offered.
  1. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.
  2. Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
Example: playing checkers.
E = the experience of playing many games of checkers
T = the task of playing checkers.
P = the probability that the program will win the next game.

In general, any machine learning problem can be assigned to one of two broad classifications:
Supervised learning and Unsupervised learning.

什么是机器学习?

机器学习的两个定义
  1. Arthur Samuel定义机器学习为: "研究使计算机在无需特定明确的编程下自主学习的邻域." 这是一个很老的非正式定义
  2. Tom Mitchell提供了一个正式的定义: "一个程序被认为能从经验E中学习,解决任务 T,达到 性能度量值P,当且仅当,有了经验E后,经过P评判, 程序在处理 T 时的性能有所提升。"
例如: 国际象棋.
E = 下棋的经验
T = 下棋的任务.
P = 程序赢得下一场比赛的概率.

一般来说,任何机器学习问题都可以分为两大类:监督学习和非监督学习

有监督学习

有监督学习(Supervised learning),是一个机器学习中的方法,可以由训练资料中学到或建立一个模式( learning model),并依此模式推测新的实例。训练资料是由输入物件(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

回归问题

这是收集到的房价与房子大小相关性的数据轴

2019-11-23T13:11:57.png

现在假设你有750平的房子,想要预测它能卖多少钱。那么机器学习该如何帮助你呢?它会使用这些数据试图用一条线来拟合,拟合的线可能是线性关系也可能是其他函数关系。

2019-11-23T13:15:53.png

2019-11-23T13:16:41.png

拟合的越完美,学习算法预测的结果就越准确。而使用什么函数来拟合,就需要经验和技术。

这就是一个简单的线性回归问题,通过已知的数据集来预测一个连续的输出值。

分类问题

我们来看另一个例子,学习判断肿瘤是否为恶性的算法。

2019-11-23T13:23:24.png

以上是肿块大小与是否为恶性肿瘤的数据图,假设一个人的肿块大小为以下位置。

2019-11-23T13:25:58.png

想知道自己的肿瘤是否为恶性肿瘤的话,学习算法会根据已知的数据对患者患恶性肿瘤的概率进行预测。我们再拓展一下,我们可以对恶性肿瘤的各种性质数据做采集,然后根据其值判断其患恶性肿瘤的概率,甚至是判断其患的是哪种类型的肿瘤。这就是有监督学习中的分类问题。

Supervised Learning

In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.

Supervised learning problems are categorized into "regression" and "classification" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.

参考资料

Supervised Learning - 斯坦福大学 | Coursera
机器学习中的有监督学习,无监督学习,半监督学习

推广

 继续浏览关于 机器学习 的文章

 本文最后更新于:2019/12/09 11:57:50,可能因经年累月而与现状有所差异

 引用转载请注明:指尖魔法屋 > 学习笔记 > 有监督学习中的回归问题与分类问题

精选评论

  1. 头条
    头条 回复

    Windows 7Chrome 63.0.3239.132

    文章不错支持一下吧

  2.  Annabel
    Annabel 回复

    未知操作系统未知浏览器

    棒棒

  3.  醉月思
    醉月思 回复

    未知操作系统未知浏览器

    666